How Does the Brain Represent Word Meanings?

Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University
September 2010

Neurosemantics Research Team

Gustavo Sudre

Kai Min Chang

Leila Wehbe

Indra Rustandi

Mark Palatucci

Alona Fyshe

Typical stimuli

Functional MRI

fMRI activation for "bottle":

Mean activation averaged over 60 different stimuli:

"bottle" minus mean activation:

Q1: Can one distinguish which word you're thinking about based on fMRI?

(classifier as virtual sensor of mental state)

Training Classifiers over fMRI sequences

- Train the classifier function

Mean $(\mathrm{fMRI}(\mathrm{t}+4), \ldots, \mathrm{fMRI}(\mathrm{t}+7)) \rightarrow$ WordCategory

- Preprocessing:
- Adjust for head motion
- Convert each image x to standard normal image
- Learning algorithms tried:

$$
x(i) \leftarrow \frac{x(i)-\mu_{x}}{\sigma_{x}}
$$

- kNN (spatial correlation)
- SVM
- SVDM
- Gaussian Naïve Bayes
- Regularized Logistic regression \leqslant current favorite
- ...
- Feature selection methods tried:
- Logistic regression weights, voxel stability, activity relative to fixation, regularization (L1, L2), ...

Classification task: is person viewing a "tool" or "building"?

Q2: Are neural representations similar across people?

Can we train on one group of people, decode for new person?

Local classifiers show where information is encoded

[F. Pereira] spotlight classifiers [N. Kriegeskorte]
"tools" vs
"buildings"

Accuracies of cubical 27-voxel classifiers centered at each voxel

[0.7-0.8]

Q3: Can we discover underlying principles of neural encodings?

Idea: Predict neural activity from corpus statistics of stimulus word

[Mitchell et al., Science, 2008]


```
Semantic feature values: "celery"
0.8368, eat
0.3461, taste
0.3153, fill
0.2430, see
0.1145, clean
0.0600, open
0.0586, smell
0.0286, touch
0.0000, drive
0.0000, wear
0.0000, lift
0.0000, break
0.0000, ride
```


Predicted Activation is Sum of Feature Contributions

Predicted and observed fMRI images for "celery" and "airplane" after training on 58 other words.

Evaluating the Computational Model

- Train it using 58 of the 60 word stimuli
- Apply it to predict fMRI images for other 2 words
- Test: show it the observed images for the 2 held-out, and make it predict which is which

1770 test pairs in leave-2-out:

- Random guessing $\rightarrow 0.50$ accuracy
- Accuracy above 0.61 is significant ($\mathrm{p}<0.05$)

Mean accuracy over 9 subjects: 0.79

Pars opercularis ($\mathrm{z}=24 \mathrm{~mm}$)

Postcentral gyrus
$(\mathrm{z}=30 \mathrm{~mm})$

Run

Superior temporal sulcus (posterior) ($\mathrm{z}=12 \mathrm{~mm}$)

Q4: What are the actual semantic primitives from which neural encodings are composed?

Alternative semantic feature sets

PREDEFINED corpus features	Mean Acc.
25 verb co-occurrences	.79
486 verb co-occurrences	.79
50,000 word co-occurences	.76
300 Latent Semantic Analysis features	.73
50 corpus features from Collobert\&Weston ICML08	.78

Alternative semantic feature sets

PREDEFINED corpus features	Mean Acc.
25 verb co-occurrences	.79
486 verb co-occurrences	.79
50,000 word co-occurences	.76
300 Latent Semantic Analysis features	.73
50 corpus features from Collobert\&Weston ICML08	.78
$\mathbf{2 1 8}$ features collected using Mechanical Turk	.83

Is it heavy?
Is it flat?
Is it curved?
Is it colorful?
Is it hollow?
Is it smooth?
Is it fast?
Is it bigger than a car?
Is it usually outside?
Does it have corners?
Does it have moving parts?
Does it have seeds?

Can it break?
Can it swim?
Can it change shape?
Can you sit on it?
Can you pick it up?
Could you fit inside of it?
Does it roll?
Does it use electricity?
Does it make a sound?
Does it have a backbone?
Does it have roots?
Do you love it?
features authored by Dean Pomerleau.
feature values 1 to 5
features collected from at least three people
people provided by Amazon's
"Mechanical Turk"

Alternative semantic feature sets

PREDEFINED corpus features	Mean Acc.
25 verb co-occurrences	.79
486 verb co-occurrences	.79
50,000 word co-occurences	.76
300 Latent Semantic Analysis features	.73
50 corpus features from Collobert\&Weston ICML08	.78
$\mathbf{2 1 8}$ features collected using Mechanical Turk*	.83
$\mathbf{2 0}$ features discovered from the data**	.87

* developed by Dean Pommerleau ** developed by Indra Rustandi

Discovering shared semantic basis

* trained using Canonical Correlation Analysis

Multi-study (WP+WO) Multi-subject (9+11) CCA Top Stimulus Words

	component I	component 2	component 3	component 4
most positive stimuli	apartment church closet house barn	screwdriver pliers refrigerator knife hammer	telephone butterfly bicycle beetle dog	pants dress glass coat chair
shelter? manipulation?				

Additional Directions

- Model for abstract words (love, justice, anxiety,...)
- preliminary: accuracies similar to those for concrete nouns
- Model phrases ("firm tomato")
- [Chang et al., ACL2009]: composing corpus statistics for <adjective> and <noun> predicts fMRI for <adjective noun>
- MEG imaging (1 msec time resolution)
- preliminary results: can train classifiers to detect both where and when neural activity codes word meanings, and stimulus percepts
- ML algorithms that build cumulative models from many (100's of) data sets

Where Next?

- What will a "theory" of the brain (or the cell) look like?
- Set of architectural organizing principles,
- and a detailed computational model that follows them
- How will we learn it?
- Current approaches are data-starved
- Need algorithms that learn cumulatively from
- many experiments
- priors gleaned from research literature
- priors that express researcher's hypotheses
- optimal planning of next experiment
thank you!

